Unveiling the transformative AI technology behind watsonx Orders

Analytics & Cognitive News
Typography
  • Smaller Small Medium Big Bigger
  • Default Helvetica Segoe Georgia Times

You’re headed to your favorite drive-thru to grab fries and a cheeseburger. It’s a simple order and as you pull in you notice there isn’t much of a line. What could possibly go wrong? Plenty.

The restaurant is near a busy freeway with roaring traffic noise and airplanes fly low overhead as they approach the nearby airport. It’s windy. The stereo is blasting in the car behind you and the customer in the next lane is trying to order at the same time as you. The cacophony would challenge even the most experienced human order taker.

With IBM watsonx™ Orders, we have created an AI-powered voice agent to take drive-thru orders without human intervention. The product uses bleeding edge technology to isolate and understand the human voice in noisy conditions while simultaneously supporting a natural, free-flowing conversation between the customer placing the order and the voice agent.

Watsonx Orders understands speech and delivers orders

IBM watsonx Orders begins the process when it detects a vehicle pulling up to the speaker post. It greets customers and asks what they’d like to order. It then listens to process incoming audio and isolates the human voice. From that, it detects the order and the items, then shows the customer what it heard on the digital menu board. If the customer says everything looks right, watsonx Orders sends the order to the point of sale and the kitchen. Finally, the kitchen prepares the food. The full ordering process is shown in the figure below:

http://www.w3.org/2000/svg" version="1.1"/>" />

There are three parts to understanding a customer order. The first part is isolating the human voice and ignoring conflicting environmental sounds. The second part is then understanding speech, including the complexity of accents, colloquialisms, emotions and misstatements. Finally, the third part is translating speech data into an action that reflects customer intent.

Isolating the human voice

When you call your bank or utilities company, a voice agent chatbot probably answers the call first to ask why you’re calling. That chatbot is expecting relatively quiet audio from a phone with little to no background noise.

In the drive-thru, there will always be background noise. No matter how good the audio hardware is, human voices can be drowned out by loud noises, such as a passing train horn.

As watsonx Orders captures audio in real time, it uses machine-learning techniques to perform digital noise and echo cancellation. It ignores noises from wind, rain, highway traffic and airports. Other noise challenges include unexpected background noise and cross-talk, where people are talking in the background during an order.  Watsonx Orders uses advanced techniques to minimize these disruptions.

Understanding speech

Most voice chatbots began as text chatbots. Traditional voice agents first turn spoken words into written text, then they analyze the written sentence to figure out what the speaker wants.

This is computationally slow and wasteful. Instead of first trying to transcribe sounds into words and sentences, watsonx Orders turns speech into phonemes (the smallest units of sound in speech that convey a distinct meaning). For example, when you say “shake,” watsonx Orders parses that word into “sh,” “ay” and hard “k.” Converting speech into phonemes, instead of full English text, also increases accuracy over different accents and actively supports a real-time conversation flow by reducing intra-dialog latency.

Translating understanding into action

Next, watsonx Orders identifies intent, such as “I want” or “cancel that.” It then identifies the items that pertain to the commands like “cheeseburger” or “apple pie.”

There are several machine learning techniques for intent recognition. The latest technique uses foundation and large language models, which theoretically can understand any question and respond with an appropriate answer. This is too slow and computationally expensive for hardware-restrained use cases. While it might be impressive for a drive-thru voice agent to answer, “Why is the sky blue?”, it would slow the drive thru, frustrating the people in line and decreasing revenue.

Watsonx Orders uses a highly specific model that is optimized to understand the hundreds of millions of ways that you can order a cheeseburger, such as “No onions, light on the special sauce, or extra tomatoes.” The model also allows customers to modify the menu mid-order: “Actually, no tomatoes on that burger.”

In production, watsonx Orders can complete more than 90% of orders by itself without any human intervention. It’s worth noting that other vendors in this space use contact centers with human operators to take over when the AI agent gets stuck and they count the interaction as “automated.” By our IBM watsonx Orders standards, “automated” means handling an order end-to-end without any humans involved.

Real-world implementation drives profits

During peak times, watsonx Orders can handle more than 150 cars per hour in a dual-lane restaurant, which is better than most human order takers. More cars per hour means more revenue and profit, so our engineering and modeling approaches are constantly optimizing for this metric.

Watsonx Orders has taken 60 million real-world orders in dozens of restaurants, even with challenging noise, cross-talk and order complexity. We built the platform to easily adapt to new menus, restaurant technology stacks and centralized menu management systems in hopes that we can work with every quick-serve restaurant chain across the globe.

IBM is a leading global hybrid cloud and AI, and business services provider, helping clients in more than 175 countries capitalize on insights from their data, streamline business processes, reduce costs and gain the competitive edge in their industries. Nearly 3,000 government and corporate entities in critical infrastructure areas such as financial services, telecommunications and healthcare rely on IBM's hybrid cloud platform and Red Hat OpenShift to affect their digital transformations quickly, efficiently, and securely. IBM's breakthrough innovations in AI, quantum computing, industry-specific cloud solutions and business services deliver open and flexible options to our clients. All of this is backed by IBM's legendary commitment to trust, transparency, responsibility, inclusivity, and service.

For more information, visit: www.ibm.com.

BLOG COMMENTS POWERED BY DISQUS

LATEST COMMENTS

Support MC Press Online

$

Book Reviews

Resource Center

  •  

  • LANSA Business users want new applications now. Market and regulatory pressures require faster application updates and delivery into production. Your IBM i developers may be approaching retirement, and you see no sure way to fill their positions with experienced developers. In addition, you may be caught between maintaining your existing applications and the uncertainty of moving to something new.

  • The MC Resource Centers bring you the widest selection of white papers, trial software, and on-demand webcasts for you to choose from. >> Review the list of White Papers, Trial Software or On-Demand Webcast at the MC Press Resource Center. >> Add the items to yru Cart and complet he checkout process and submit

  • SB Profound WC 5536Join us for this hour-long webcast that will explore:

  • Fortra IT managers hoping to find new IBM i talent are discovering that the pool of experienced RPG programmers and operators or administrators with intimate knowledge of the operating system and the applications that run on it is small. This begs the question: How will you manage the platform that supports such a big part of your business? This guide offers strategies and software suggestions to help you plan IT staffing and resources and smooth the transition after your AS/400 talent retires. Read on to learn: